
Perl version 5.10.0 documentation - B::Lint

Page 1http://perldoc.perl.org

NAME
B::Lint - Perl lint

SYNOPSIS
perl -MO=Lint[,OPTIONS] foo.pl

DESCRIPTION
The B::Lint module is equivalent to an extended version of the -w
 option of perl. It is named after the
program lint which carries
 out a similar process for C programs.

OPTIONS AND LINT CHECKS
Option words are separated by commas (not whitespace) and follow the
 usual conventions of
compiler backend options. Following any options
 (indicated by a leading -) come lint check
arguments. Each such
 argument (apart from the special all and none options) is a
 word representing
one possible lint check (turning on that check) or
 is no-foo (turning off that check). Before processing
the check
 arguments, a standard list of checks is turned on. Later options
 override earlier ones.
Available options are:

magic-diamond

Produces a warning whenever the magic <> readline is
 used. Internally it uses perl's
two-argument open which itself treats
 filenames with special characters specially. This
could allow
 interestingly named files to have unexpected effects when reading.

 % touch 'rm *|'
 % perl -pe 1

The above creates a file named rm *|. When perl opens it with <> it actually
executes the shell program rm *. This
 makes <> dangerous to use carelessly.

context

Produces a warning whenever an array is used in an implicit scalar
 context. For
example, both of the lines

 $foo = length(@bar);
 $foo = @bar;

will elicit a warning. Using an explicit scalar() silences the
 warning. For example,

 $foo = scalar(@bar);

implicit-read and implicit-write

These options produce a warning whenever an operation implicitly
 reads or
(respectively) writes to one of Perl's special variables.
 For example, implicit-read will
warn about these:

 /foo/;

and implicit-write will warn about these:

 s/foo/bar/;

Both implicit-read and implicit-write warn about this:

 for (@a) { ... }

bare-subs

This option warns whenever a bareword is implicitly quoted, but is also
 the name of a
subroutine in the current package. Typical mistakes that it will
 trap are:

Perl version 5.10.0 documentation - B::Lint

Page 2http://perldoc.perl.org

 use constant foo => 'bar';
 @a = (foo => 1);
 $b{foo} = 2;

Neither of these will do what a naive user would expect.

dollar-underscore

This option warns whenever $_ is used either explicitly anywhere or
 as the implicit
argument of a print statement.

private-names

This option warns on each use of any variable, subroutine or
 method name that lives in
a non-current package but begins with
 an underscore ("_"). Warnings aren't issued for
the special case
 of the single character name "_" by itself (e.g. $_ and @_).

undefined-subs

This option warns whenever an undefined subroutine is invoked.
 This option will only
catch explicitly invoked subroutines such
 as foo() and not indirect invocations such
as &$subref()
 or $obj->meth(). Note that some programs or modules delay

definition of subs until runtime by means of the AUTOLOAD
 mechanism.

regexp-variables

This option warns whenever one of the regexp variables $`, $& or $'
 is used. Any
occurrence of any of these variables in your
 program can slow your whole program
down. See perlre for
 details.

all

Turn all warnings on.

none

Turn all warnings off.

NON LINT-CHECK OPTIONS
-u Package

Normally, Lint only checks the main code of the program together
 with all subs defined
in package main. The -u option lets you
 include other package names whose subs are
then checked by Lint.

EXTENDING LINT
Lint can be extended by with plugins. Lint uses Module::Pluggable
 to find available plugins. Plugins
are expected but not required to
 inform Lint of which checks they are adding.

The B::Lint->register_plugin(MyPlugin => \@new_checks) method
 adds the list of
@new_checks to the list of valid checks. If your
 module wasn't loaded by Module::Pluggable then
your class name is
 added to the list of plugins.

You must create a match(\%checks) method in your plugin class or one
 of its parents. It will be
called on every op as a regular method call
 with a hash ref of checks as its parameter.

The class methods B::Lint->file and B::Lint->line contain
 the current filename and line
number.

 package Sample;
 use B::Lint;
 B::Lint->register_plugin(Sample => ['good_taste']);

 sub match {

Perl version 5.10.0 documentation - B::Lint

Page 3http://perldoc.perl.org

 my ($op, $checks_href) = shift @_;
 if ($checks_href->{good_taste}) {
 ...
 }
 }

TODO
while(<FH>) stomps $_

strict oo

unchecked system calls

more tests, validate against older perls

BUGS
This is only a very preliminary version.

AUTHOR
Malcolm Beattie, mbeattie@sable.ox.ac.uk.

