
Perl version 5.10.0 documentation - Carp

Page 1http://perldoc.perl.org

NAME
carp - warn of errors (from perspective of caller)

cluck - warn of errors with stack backtrace
 (not exported by default)

croak - die of errors (from perspective of caller)

confess - die of errors with stack backtrace

SYNOPSIS
 use Carp;
 croak "We're outta here!";

 use Carp qw(cluck);
 cluck "This is how we got here!";

DESCRIPTION
The Carp routines are useful in your own modules because
 they act like die() or warn(), but with a
message which is more
 likely to be useful to a user of your module. In the case of
 cluck, confess, and
longmess that context is a summary of every
 call in the call-stack. For a shorter message you can use
carp
 or croak which report the error as being from where your module
 was called. There is no
guarantee that that is where the error
 was, but it is a good educated guess.

You can also alter the way the output and logic of Carp works, by
 changing some global variables in
the Carp namespace. See the
 section on GLOBAL VARIABLES below.

Here is a more complete description of how c<carp> and c<croak> work.
 What they do is search the
call-stack for a function call stack where
 they have not been told that there shouldn't be an error. If
every
 call is marked safe, they give up and give a full stack backtrace
 instead. In other words they
presume that the first likely looking
 potential suspect is guilty. Their rules for telling whether
 a call
shouldn't generate errors work as follows:

1. Any call from a package to itself is safe.

2. Packages claim that there won't be errors on calls to or from
 packages explicitly marked as
safe by inclusion in @CARP_NOT, or
 (if that array is empty) @ISA. The ability to override what

@ISA says is new in 5.8.

3. The trust in item 2 is transitive. If A trusts B, and B
 trusts C, then A trusts C. So if you do not
override @ISA
 with @CARP_NOT, then this trust relationship is identical to,
 "inherits from".

4. Any call from an internal Perl module is safe. (Nothing keeps
 user modules from marking
themselves as internal to Perl, but
 this practice is discouraged.)

5. Any call to Perl's warning system (eg Carp itself) is safe.
 (This rule is what keeps it from
reporting the error at the
 point where you call carp or croak.)

6. $Carp::CarpLevel can be set to skip a fixed number of additional
 call levels. Using this is
not recommended because it is very
 difficult to get it to behave correctly.

Forcing a Stack Trace
As a debugging aid, you can force Carp to treat a croak as a confess
 and a carp as a cluck across all
modules. In other words, force a
 detailed stack trace to be given. This can be very helpful when trying
to understand why, or from where, a warning or error is being generated.

This feature is enabled by 'importing' the non-existent symbol
 'verbose'. You would typically enable it
by saying

 perl -MCarp=verbose script.pl

Perl version 5.10.0 documentation - Carp

Page 2http://perldoc.perl.org

or by including the string MCarp=verbose in the PERL5OPT
 environment variable.

Alternately, you can set the global variable $Carp::Verbose to true.
 See the GLOBAL VARIABLES
section below.

GLOBAL VARIABLES
$Carp::MaxEvalLen

This variable determines how many characters of a string-eval are to
 be shown in the output. Use a
value of 0 to show all text.

Defaults to 0.

$Carp::MaxArgLen
This variable determines how many characters of each argument to a
 function to print. Use a value of
0 to show the full length of the
 argument.

Defaults to 64.

$Carp::MaxArgNums
This variable determines how many arguments to each function to show.
 Use a value of 0 to show all
arguments to a function call.

Defaults to 8.

$Carp::Verbose
This variable makes carp and cluck generate stack backtraces
 just like cluck and confess. This
is how use Carp 'verbose'
 is implemented internally.

Defaults to 0.

%Carp::Internal
This says what packages are internal to Perl. Carp will never
 report an error as being from a line in a
package that is internal to
 Perl. For example:

 $Carp::Internal{ __PACKAGE__ }++;
 # time passes...
 sub foo { ... or confess("whatever") };

would give a full stack backtrace starting from the first caller
 outside of __PACKAGE__. (Unless that
package was also internal to
 Perl.)

%Carp::CarpInternal
This says which packages are internal to Perl's warning system. For
 generating a full stack backtrace
this is the same as being internal
 to Perl, the stack backtrace will not start inside packages that are

listed in %Carp::CarpInternal. But it is slightly different for
 the summary message generated by
carp or croak. There errors
 will not be reported on any lines that are calling packages in
%Carp::CarpInternal.

For example Carp itself is listed in %Carp::CarpInternal.
 Therefore the full stack backtrace from
confess will not start
 inside of Carp, and the short message from calling croak is
 not placed on the
line where croak was called.

$Carp::CarpLevel
This variable determines how many additional call frames are to be
 skipped that would not otherwise
be when reporting where an error
 occurred on a call to one of Carp's functions. It is fairly easy
 to
count these call frames on calls that generate a full stack
 backtrace. However it is much harder to do
this accounting for calls
 that generate a short message. Usually people skip too many call
 frames. If
they are lucky they skip enough that Carp goes all of
 the way through the call stack, realizes that

Perl version 5.10.0 documentation - Carp

Page 3http://perldoc.perl.org

something is wrong, and
 then generates a full stack backtrace. If they are unlucky then the
 error is
reported from somewhere misleading very high in the call
 stack.

Therefore it is best to avoid $Carp::CarpLevel. Instead use @CARP_NOT, %Carp::Internal and
%Carp::CarpInternal>.

Defaults to 0.

BUGS
The Carp routines don't handle exception objects currently.
 If called with a first argument that is a
reference, they simply
 call die() or warn(), as appropriate.

