
Perl version 5.10.0 documentation - Log::Message

Page 1http://perldoc.perl.org

NAME
Log::Message - A generic message storing mechanism;

SYNOPSIS
 use Log::Message private => 0, config => '/our/cf_file';

 my $log = Log::Message->new(private => 1,
 level => 'log',
 config => '/my/cf_file',
);

 $log->store('this is my first message');

 $log->store(message => 'message #2',
 tag => 'MY_TAG',
 level => 'carp',
 extra => ['this is an argument to the handler'],
);

 my @last_five_items = $log->retrieve(5);

 my @items = $log->retrieve(tag => qr/my_tag/i,
 message => qr/\d/,
 remove => 1,
);

 my @items = $log->final(level => qr/carp/, amount => 2);

 my $first_error = $log->first()

 # croak with the last error on the stack
 $log->final->croak;

 # empty the stack
 $log->flush();

DESCRIPTION
Log::Message is a generic message storage mechanism.
 It allows you to store messages on a stack
-- either shared or private
 -- and assign meta-data to it.
 Some meta-data will automatically be added
for you, like a timestamp
 and a stack trace, but some can be filled in by the user, like a tag
 by which
to identify it or group it, and a level at which to handle
 the message (for example, log it, or die with it)

Log::Message also provides a powerful way of searching through items
 by regexes on messages,
tags and level.

Hierarchy
There are 4 modules of interest when dealing with the Log::Message::*
 modules:

Log::Message

Log::Message provides a few methods to manipulate the stack it keeps.
 It has the option of
keeping either a private or a public stack.
 More on this below.

Log::Message::Item

Perl version 5.10.0 documentation - Log::Message

Page 2http://perldoc.perl.org

These are individual message items, which are objects that contain
 the user message as well
as the meta-data described above.
 See the Log::Message::Item manpage to see how to
extract this meta-data and how to work with the Item objects.
 You should never need to create
your own Item objects, but knowing
 about their methods and accessors is important if you
want to write
 your own handlers. (See below)

Log::Message::Handlers

These are a collection of handlers that will be called for a level
 that is used on a
Log::Message::Item object.
 For example, if a message is logged with the 'carp' level, the 'carp'
handler from Log::Message::Handlers will be called.
 See the Log::Message::Handlers
manpage for more explanation about how
 handlers work, which one are available and how to
create your own.

Log::Message::Config

Per Log::Message object, there is a configuration required that will
 fill in defaults if the user did
not specify arguments to override
 them (like for example what tag will be set if none was
provided), Log::Message::Config handles the creation of these configurations.

Configuration can be specified in 4 ways:

As a configuration file when you use Log::Message

As arguments when you use Log::Message

As a configuration file when you create a new Log::Message object.
 (The config will
then only apply to that object if you marked it as
 private)

As arguments when you create a new Log::Message object.

You should never need to use the Log::Message::Config module yourself,
 as this is
transparently done by Log::Message, but its manpage does
 provide an explanation of
how you can create a config file.

Options
When using Log::Message, or creating a new Log::Message object, you can
 supply various options to
alter its behaviour.
 Of course, there are sensible defaults should you choose to omit these
 options.

Below an explanation of all the options and how they work.

config

The path to a configuration file to be read.
 See the manpage of Log::Message::Config for the
required format

These options will be overridden by any explicit arguments passed.

private

Whether to create, by default, private or shared objects.
 If you choose to create shared
objects, all Log::Message objects will
 use the same stack.

This means that even though every module may make its own $log object
 they will still be
sharing the same error stack on which they are
 putting errors and from which they are
retrieving.

This can be useful in big projects.

If you choose to create a private object, then the stack will of
 course be private to this object,
but it will still fall back to the
 shared config should no private config or overriding arguments be
provided.

verbose

Log::Message makes use of another module to validate its arguments,
 which is called
Params::Check, which is a lightweight, yet powerful input checker and parser. (See the

Perl version 5.10.0 documentation - Log::Message

Page 3http://perldoc.perl.org

Params::Check manpage for details).

The verbose setting will control whether this module will
 generate warnings if something
improper is passed as input, or merely
 silently returns undef, at which point Log::Message will
generate a
 warning.

It's best to just leave this at its default value, which is '1'

tag

The tag to add to messages if none was provided. If neither your
 config, nor any specific
arguments supply a tag, then Log::Message will
 set it to 'NONE'

Tags are useful for searching on or grouping by. For example, you
 could tag all the messages
you want to go to the user as 'USER ERROR'
 and all those that are only debug information
with 'DEBUG'.

At the end of your program, you could then print all the ones tagged
 'USER ERROR' to
STDOUT, and those marked 'DEBUG' to a log file.

level

level describes what action to take when a message is logged. Just
 like tag, Log::Message
will provide a default (which is 'log') if
 neither your config file, nor any explicit arguments are
given to
 override it.

See the Log::Message::Handlers manpage to see what handlers are
 available by default and
what they do, as well as to how to add your
 own handlers.

remove

This indicates whether or not to automatically remove the messages
 from the stack when
you've retrieved them.
 The default setting provided by Log::Message is '0': do not remove.

chrono

This indicates whether messages should always be fetched in
 chronological order or not.
 This
simply means that you can choose whether, when retrieving items,
 the item most recently
added should be returned first, or the one that
 had been added most long ago.

The default is to return the newest ones first

Methods
new

This creates a new Log::Message object; The parameters it takes are
 described in the Options
section below and let it just be repeated
 that you can use these options like this:

 my $log = Log::Message->new(%options);

as well as during use time, like this:

 use Log::Message option1 => value, option2 => value

There are but 3 rules to keep in mind:

Provided arguments take precedence over a configuration file.

Arguments to new take precedence over options provided at use time

An object marked private will always have an empty stack to begin with

store
This will create a new Item object and store it on the stack.

Possible arguments you can give to it are:

Perl version 5.10.0 documentation - Log::Message

Page 4http://perldoc.perl.org

message

This is the only argument that is required. If no other arguments
 are given, you may even
leave off the message key. The argument
 will then automatically be assumed to be the
message.

tag

The tag to add to this message. If not provided, Log::Message will look
 in your configuration
for one.

level

The level at which this message should be handled. If not provided,
 Log::Message will look in
your configuration for one.

extra

This is an array ref with arguments passed to the handler for this
 message, when it is called
from store();

The handler will receive them as a normal list

store() will return true upon success and undef upon failure, as well
 as issue a warning as to why it
failed.

retrieve
This will retrieve all message items matching the criteria specified
 from the stack.

Here are the criteria you can discriminate on:

tag

A regex to which the tag must adhere. For example qr/\w/.

level

A regex to which the level must adhere.

message

A regex to which the message must adhere.

amount

Maximum amount of errors to return

chrono

Return in chronological order, or not?

remove

Remove items from the stack upon retrieval?

In scalar context it will return the first item matching your criteria
 and in list context, it will return all of
them.

If an error occurs while retrieving, a warning will be issued and
 undef will be returned.

first
This is a shortcut for retrieving the first item(s) stored on the
 stack. It will default to only retrieving one
if called with no
 arguments, and will always return results in chronological order.

If you only supply one argument, it is assumed to be the amount you
 wish returned.

Furthermore, it can take the same arguments as retrieve can.

Perl version 5.10.0 documentation - Log::Message

Page 5http://perldoc.perl.org

last
This is a shortcut for retrieving the last item(s) stored on the
 stack. It will default to only retrieving one
if called with no
 arguments, and will always return results in reverse chronological
 order.

If you only supply one argument, it is assumed to be the amount you
 wish returned.

Furthermore, it can take the same arguments as retrieve can.

flush
This removes all items from the stack and returns them to the caller

SEE ALSO
Log::Message::Item, Log::Message::Handlers, Log::Message::Config

AUTHOR
This module by
 Jos Boumans <kane@cpan.org>.

Acknowledgements
Thanks to Ann Barcomb for her suggestions.

COPYRIGHT
This module is
 copyright (c) 2002 Jos Boumans <kane@cpan.org>.
 All rights reserved.

This library is free software;
 you may redistribute and/or modify it under the same
 terms as Perl itself.

