
Perl version 5.8.8 documentation - Exporter

Page 1http://perldoc.perl.org

NAME
Exporter - Implements default import method for modules

SYNOPSIS
In module YourModule.pm:

 package YourModule;
 require Exporter;
 @ISA = qw(Exporter);
 @EXPORT_OK = qw(munge frobnicate); # symbols to export on request

or

 package YourModule;
 use Exporter 'import'; # gives you Exporter's import() method directly
 @EXPORT_OK = qw(munge frobnicate); # symbols to export on request

In other files which wish to use YourModule:

 use ModuleName qw(frobnicate); # import listed symbols
 frobnicate ($left, $right) # calls YourModule::frobnicate

DESCRIPTION
The Exporter module implements an import method which allows a module
 to export functions and
variables to its users' namespaces. Many modules
 use Exporter rather than implementing their own
import method because
 Exporter provides a highly flexible interface, with an implementation
optimised
 for the common case.

Perl automatically calls the import method when processing a use statement for a module. Modules
and use are documented
 in perlfunc and perlmod. Understanding the concept of
 modules and how
the use statement operates is important to
 understanding the Exporter.

How to Export
The arrays @EXPORT and @EXPORT_OK in a module hold lists of
 symbols that are going to be
exported into the users name space by
 default, or which they can request to be exported,
respectively. The
 symbols can represent functions, scalars, arrays, hashes, or typeglobs.
 The
symbols must be given by full name with the exception that the
 ampersand in front of a function is
optional, e.g.

 @EXPORT = qw(afunc $scalar @array); # afunc is a function
 @EXPORT_OK = qw(&bfunc %hash *typeglob); # explicit prefix on &bfunc

If you are only exporting function names it is recommended to omit the
 ampersand, as the
implementation is faster this way.

Selecting What To Export
Do not export method names!

Do not export anything else by default without a good reason!

Exports pollute the namespace of the module user. If you must export
 try to use @EXPORT_OK in
preference to @EXPORT and avoid short or
 common symbol names to reduce the risk of name
clashes.

Generally anything not exported is still accessible from outside the
 module using the
ModuleName::item_name (or $blessed_ref->method)
 syntax. By convention you can use a leading
underscore on names to
 informally indicate that they are 'internal' and not for public use.

Perl version 5.8.8 documentation - Exporter

Page 2http://perldoc.perl.org

(It is actually possible to get private functions by saying:

 my $subref = sub { ... };
 $subref->(@args); # Call it as a function
 $obj->$subref(@args); # Use it as a method

However if you use them for methods it is up to you to figure out
 how to make inheritance work.)

As a general rule, if the module is trying to be object oriented
 then export nothing. If it's just a
collection of functions then
 @EXPORT_OK anything but use @EXPORT with caution. For function
and
 method names use barewords in preference to names prefixed with
 ampersands for the export
lists.

Other module design guidelines can be found in perlmod.

How to Import
In other files which wish to use your module there are three basic ways for
 them to load your module
and import its symbols:

use ModuleName;

This imports all the symbols from ModuleName's @EXPORT into the namespace
 of the use
statement.

use ModuleName ();

This causes perl to load your module but does not import any symbols.

use ModuleName qw(...);

This imports only the symbols listed by the caller into their namespace.
 All listed symbols must
be in your @EXPORT or @EXPORT_OK, else an error
 occurs. The advanced export features
of Exporter are accessed like this,
 but with list entries that are syntactically distinct from
symbol names.

Unless you want to use its advanced features, this is probably all you
 need to know to use Exporter.

Advanced features
Specialised Import Lists

If any of the entries in an import list begins with !, : or / then
 the list is treated as a series of
specifications which either add to
 or delete from the list of names to import. They are processed left to
right. Specifications are in the form:

 [!]name This name only
 [!]:DEFAULT All names in @EXPORT
 [!]:tag All names in $EXPORT_TAGS{tag} anonymous list
 [!]/pattern/ All names in @EXPORT and @EXPORT_OK which match

A leading ! indicates that matching names should be deleted from the
 list of names to import. If the
first specification is a deletion it
 is treated as though preceded by :DEFAULT. If you just want to
import
 extra names in addition to the default set you will still need to
 include :DEFAULT explicitly.

e.g., Module.pm defines:

 @EXPORT = qw(A1 A2 A3 A4 A5);
 @EXPORT_OK = qw(B1 B2 B3 B4 B5);
 %EXPORT_TAGS = (T1 => [qw(A1 A2 B1 B2)], T2 => [qw(A1 A2 B3 B4)]);

 Note that you cannot use tags in @EXPORT or @EXPORT_OK.
 Names in EXPORT_TAGS must also appear in @EXPORT or @EXPORT_OK.

Perl version 5.8.8 documentation - Exporter

Page 3http://perldoc.perl.org

An application using Module can say something like:

 use Module qw(:DEFAULT :T2 !B3 A3);

Other examples include:

 use Socket qw(!/^[AP]F_/ !SOMAXCONN !SOL_SOCKET);
 use POSIX qw(:errno_h :termios_h !TCSADRAIN !/^EXIT/);

Remember that most patterns (using //) will need to be anchored
 with a leading ^, e.g., /^EXIT/
rather than /EXIT/.

You can say BEGIN { $Exporter::Verbose=1 } to see how the
 specifications are being
processed and what is actually being imported
 into modules.

Exporting without using Exporter's import method
Exporter has a special method, 'export_to_level' which is used in situations
 where you can't directly
call Exporter's import method. The export_to_level
 method looks like:

 MyPackage->export_to_level($where_to_export, $package,
@what_to_export);

where $where_to_export is an integer telling how far up the calling stack
 to export your symbols, and
@what_to_export is an array telling what
 symbols *to* export (usually this is @_). The $package
argument is
 currently unused.

For example, suppose that you have a module, A, which already has an
 import function:

 package A;

 @ISA = qw(Exporter);
 @EXPORT_OK = qw ($b);

 sub import
 {
	 $A::b = 1; # not a very useful import method
 }

and you want to Export symbol $A::b back to the module that called package A. Since Exporter relies
on the import method to work, via inheritance, as it stands Exporter::import() will never get called.
Instead, say the following:

 package A;
 @ISA = qw(Exporter);
 @EXPORT_OK = qw ($b);

 sub import
 {
	 $A::b = 1;
	 A->export_to_level(1, @_);
 }

This will export the symbols one level 'above' the current package - ie: to the program or module that
used package A.

Note: Be careful not to modify @_ at all before you call export_to_level
 - or people using your package

Perl version 5.8.8 documentation - Exporter

Page 4http://perldoc.perl.org

will get very unexplained results!

Exporting without inheriting from Exporter
By including Exporter in your @ISA you inherit an Exporter's import() method
 but you also inherit
several other helper methods which you probably don't
 want. To avoid this you can do

 package YourModule;
 use Exporter qw(import);

which will export Exporter's own import() method into YourModule.
 Everything will work as before but
you won't need to include Exporter in
 @YourModule::ISA.

Module Version Checking
The Exporter module will convert an attempt to import a number from a
 module into a call to
$module_name->require_version($value). This can
 be used to validate that the version of the module
being used is
 greater than or equal to the required version.

The Exporter module supplies a default require_version method which
 checks the value of
$VERSION in the exporting module.

Since the default require_version method treats the $VERSION number as
 a simple numeric value it
will regard version 1.10 as lower than
 1.9. For this reason it is strongly recommended that you use
numbers
 with at least two decimal places, e.g., 1.09.

Managing Unknown Symbols
In some situations you may want to prevent certain symbols from being
 exported. Typically this
applies to extensions which have functions
 or constants that may not exist on some systems.

The names of any symbols that cannot be exported should be listed
 in the @EXPORT_FAIL array.

If a module attempts to import any of these symbols the Exporter
 will give the module an opportunity
to handle the situation before
 generating an error. The Exporter will call an export_fail method
 with a
list of the failed symbols:

 @failed_symbols = $module_name->export_fail(@failed_symbols);

If the export_fail method returns an empty list then no error is
 recorded and all the requested symbols
are exported. If the returned
 list is not empty then an error is generated for each symbol and the

export fails. The Exporter provides a default export_fail method which
 simply returns the list
unchanged.

Uses for the export_fail method include giving better error messages
 for some symbols and
performing lazy architectural checks (put more
 symbols into @EXPORT_FAIL by default and then
take them out if someone
 actually tries to use them and an expensive check shows that they are

usable on that platform).

Tag Handling Utility Functions
Since the symbols listed within %EXPORT_TAGS must also appear in either
 @EXPORT or
@EXPORT_OK, two utility functions are provided which allow
 you to easily add tagged sets of
symbols to @EXPORT or @EXPORT_OK:

 %EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

 Exporter::export_tags('foo'); # add aa, bb and cc to @EXPORT
 Exporter::export_ok_tags('bar'); # add aa, cc and dd to @EXPORT_OK

Any names which are not tags are added to @EXPORT or @EXPORT_OK
 unchanged but will trigger

Perl version 5.8.8 documentation - Exporter

Page 5http://perldoc.perl.org

a warning (with -w) to avoid misspelt tags
 names being silently added to @EXPORT or
@EXPORT_OK. Future versions
 may make this a fatal error.

Generating combined tags
If several symbol categories exist in %EXPORT_TAGS, it's usually
 useful to create the utility ":all" to
simplify "use" statements.

The simplest way to do this is:

 %EXPORT_TAGS = (foo => [qw(aa bb cc)], bar => [qw(aa cc dd)]);

 # add all the other ":class" tags to the ":all" class,
 # deleting duplicates
 {
 my %seen;

 push @{$EXPORT_TAGS{all}},
 grep {!$seen{$_}++} @{$EXPORT_TAGS{$_}} foreach keys %EXPORT_TAGS;
 }

CGI.pm creates an ":all" tag which contains some (but not really
 all) of its categories. That could be
done with one small
 change:

 # add some of the other ":class" tags to the ":all" class,
 # deleting duplicates
 {
 my %seen;

 push @{$EXPORT_TAGS{all}},
 grep {!$seen{$_}++} @{$EXPORT_TAGS{$_}}
 foreach qw/html2 html3 netscape form cgi internal/;
 }

Note that the tag names in %EXPORT_TAGS don't have the leading ':'.

AUTOLOADed Constants
Many modules make use of AUTOLOADing for constant subroutines to
 avoid having to compile and
waste memory on rarely used values (see perlsub for details on constant subroutines). Calls to such

constant subroutines are not optimized away at compile time because
 they can't be checked at
compile time for constancy.

Even if a prototype is available at compile time, the body of the
 subroutine is not (it hasn't been
AUTOLOADed yet). perl needs to
 examine both the () prototype and the body of a subroutine at

compile time to detect that it can safely replace calls to that
 subroutine with the constant value.

A workaround for this is to call the constants once in a BEGIN block:

 package My ;

 use Socket ;

 foo(SO_LINGER); ## SO_LINGER NOT optimized away; called at runtime
 BEGIN { SO_LINGER }
 foo(SO_LINGER); ## SO_LINGER optimized away at compile time.

Perl version 5.8.8 documentation - Exporter

Page 6http://perldoc.perl.org

This forces the AUTOLOAD for SO_LINGER to take place before
 SO_LINGER is encountered later in
My package.

If you are writing a package that AUTOLOADs, consider forcing
 an AUTOLOAD for any constants
explicitly imported by other packages
 or which are usually used when your package is used.

