
Perl version 5.8.8 documentation - bigint

Page 1http://perldoc.perl.org

NAME
bigint - Transparent BigInteger support for Perl

SYNOPSIS
 use bigint;

 $x = 2 + 4.5,"\n";			 # BigInt 6
 print 2 ** 512,"\n";			 # really is what you think it is
 print inf + 42,"\n";			 # inf
 print NaN * 7,"\n";			 # NaN

DESCRIPTION
All operators (including basic math operations) are overloaded. Integer
 constants are created as
proper BigInts.

Floating point constants are truncated to integer. All results are also
 truncated.

Options
bigint recognizes some options that can be passed while loading it via use.
 The options can
(currently) be either a single letter form, or the long form.
 The following options exist:

a or accuracy

This sets the accuracy for all math operations. The argument must be greater
 than or equal to
zero. See Math::BigInt's bround() function for details.

	 perl -Mbigint=a,2 -le 'print 12345+1'

p or precision

This sets the precision for all math operations. The argument can be any
 integer. Negative values
mean a fixed number of digits after the dot, and
 are ignored since all operations happen
in integer space.
 A positive value rounds to this digit left from the dot. 0 or 1 mean round to
 integer
and are ignore like negative values.

See Math::BigInt's bfround() function for details.

	 perl -Mbignum=p,5 -le 'print 123456789+123'

t or trace

This enables a trace mode and is primarily for debugging bigint or
 Math::BigInt.

l or lib

Load a different math lib, see MATH LIBRARY.

	 perl -Mbigint=l,GMP -e 'print 2 ** 512'

Currently there is no way to specify more than one library on the command
 line. This will be
hopefully fixed soon ;)

v or version

This prints out the name and version of all modules used and then exits.

	 perl -Mbigint=v

Math Library
Math with the numbers is done (by default) by a module called
 Math::BigInt::Calc. This is equivalent to
saying:

Perl version 5.8.8 documentation - bigint

Page 2http://perldoc.perl.org

	 use bigint lib => 'Calc';

You can change this by using:

	 use bigint lib => 'BitVect';

The following would first try to find Math::BigInt::Foo, then
 Math::BigInt::Bar, and when this also fails,
revert to Math::BigInt::Calc:

	 use bigint lib => 'Foo,Math::BigInt::Bar';

Please see respective module documentation for further details.

Internal Format
The numbers are stored as objects, and their internals might change at anytime,
 especially between
math operations. The objects also might belong to different
 classes, like Math::BigInt, or
Math::BigInt::Lite. Mixing them together, even
 with normal scalars is not extraordinary, but normal and
expected.

You should not depend on the internal format, all accesses must go through
 accessor methods. E.g.
looking at $x->{sign} is not a good idea since there
 is no guaranty that the object in question has such
a hash key, nor is a hash
 underneath at all.

Sign
The sign is either '+', '-', 'NaN', '+inf' or '-inf'.
 You can access it with the sign() method.

A sign of 'NaN' is used to represent the result when input arguments are not
 numbers or as a result of
0/0. '+inf' and '-inf' represent plus respectively
 minus infinity. You will get '+inf' when dividing a positive
number by 0, and
 '-inf' when dividing any negative number by 0.

Methods
Since all numbers are now objects, you can use all functions that are part of
 the BigInt API. You can
only use the bxxx() notation, and not the fxxx()
 notation, though.

Caveat
But a warning is in order. When using the following to make a copy of a number,
 only a shallow copy
will be made.

	 $x = 9; $y = $x;
	 $x = $y = 7;

Using the copy or the original with overloaded math is okay, e.g. the
 following work:

	 $x = 9; $y = $x;
	 print $x + 1, " ", $y,"\n";	 # prints 10 9

but calling any method that modifies the number directly will result in both the original and the copy
beeing destroyed:

	 $x = 9; $y = $x;
	 print $x->badd(1), " ", $y,"\n";	 # prints 10 10

 $x = 9; $y = $x;
	 print $x->binc(1), " ", $y,"\n";	 # prints 10 10

	 $x = 9; $y = $x;
	 print $x->bmul(2), " ", $y,"\n";	 # prints 18 18

Using methods that do not modify, but testthe contents works:

	 $x = 9; $y = $x;
	 $z = 9 if $x->is_zero();		 # works fine

Perl version 5.8.8 documentation - bigint

Page 3http://perldoc.perl.org

See the documentation about the copy constructor and = in overload, as
 well as the documentation in
BigInt for further details.

MODULES USED
bigint is just a thin wrapper around various modules of the Math::BigInt
 family. Think of it as the
head of the family, who runs the shop, and orders
 the others to do the work.

The following modules are currently used by bigint:

	 Math::BigInt::Lite	 (for speed, and only if it is loadable)
	 Math::BigInt

EXAMPLES
Some cool command line examples to impress the Python crowd ;) You might want
 to compare them
to the results under -Mbignum or -Mbigrat:

	 perl -Mbigint -le 'print sqrt(33)'
	 perl -Mbigint -le 'print 2*255'
	 perl -Mbigint -le 'print 4.5+2*255'
	 perl -Mbigint -le 'print 3/7 + 5/7 + 8/3'
	 perl -Mbigint -le 'print 123->is_odd()'
	 perl -Mbigint -le 'print log(2)'
	 perl -Mbigint -le 'print 2 ** 0.5'
	 perl -Mbigint=a,65 -le 'print 2 ** 0.2'

LICENSE
This program is free software; you may redistribute it and/or modify it under
 the same terms as Perl
itself.

SEE ALSO
Especially bigrat as in perl -Mbigrat -le 'print 1/3+1/4' and bignum as in perl
-Mbignum -le 'print sqrt(2)'.

Math::BigInt, Math::BigRat and Math::Big as well
 as Math::BigInt::BitVect, Math::BigInt::Pari and
Math::BigInt::GMP.

AUTHORS
(C) by Tels http://bloodgate.com/ in early 2002 - 2005.

