
Perl version 5.8.8 documentation - perliol

Page 1http://perldoc.perl.org

NAME
perliol - C API for Perl's implementation of IO in Layers.

SYNOPSIS
 /* Defining a layer ... */
 #include <perliol.h>

DESCRIPTION
This document describes the behavior and implementation of the PerlIO
 abstraction described in
perlapio when USE_PERLIO is defined (and USE_SFIO is not).

History and Background
The PerlIO abstraction was introduced in perl5.003_02 but languished as
 just an abstraction until
perl5.7.0. However during that time a number
 of perl extensions switched to using it, so the API is
mostly fixed to
 maintain (source) compatibility.

The aim of the implementation is to provide the PerlIO API in a flexible
 and platform neutral manner. It
is also a trial of an "Object Oriented
 C, with vtables" approach which may be applied to perl6.

Basic Structure
PerlIO is a stack of layers.

The low levels of the stack work with the low-level operating system
 calls (file descriptors in C) getting
bytes in and out, the higher
 layers of the stack buffer, filter, and otherwise manipulate the I/O,
 and
return characters (or bytes) to Perl. Terms above and below
 are used to refer to the relative
positioning of the stack layers.

A layer contains a "vtable", the table of I/O operations (at C level
 a table of function pointers), and
status flags. The functions in the
 vtable implement operations like "open", "read", and "write".

When I/O, for example "read", is requested, the request goes from Perl
 first down the stack using
"read" functions of each layer, then at the
 bottom the input is requested from the operating system
services, then
 the result is returned up the stack, finally being interpreted as Perl
 data.

The requests do not necessarily go always all the way down to the
 operating system: that's where
PerlIO buffering comes into play.

When you do an open() and specify extra PerlIO layers to be deployed,
 the layers you specify are
"pushed" on top of the already existing
 default stack. One way to see it is that "operating system is
 on
the left" and "Perl is on the right".

What exact layers are in this default stack depends on a lot of
 things: your operating system, Perl
version, Perl compile time
 configuration, and Perl runtime configuration. See PerlIO, "PERLIO" in
perlrun, and open for more information.

binmode() operates similarly to open(): by default the specified
 layers are pushed on top of the
existing stack.

However, note that even as the specified layers are "pushed on top"
 for open() and binmode(), this
doesn't mean that the effects are
 limited to the "top": PerlIO layers can be very 'active' and inspect

and affect layers also deeper in the stack. As an example there
 is a layer called "raw" which
repeatedly "pops" layers until
 it reaches the first layer that has declared itself capable of
 handling
binary data. The "pushed" layers are processed in left-to-right
 order.

sysopen() operates (unsurprisingly) at a lower level in the stack than
 open(). For example in UNIX or
UNIX-like systems sysopen() operates
 directly at the level of file descriptors: in the terms of PerlIO

layers, it uses only the "unix" layer, which is a rather thin wrapper
 on top of the UNIX file descriptors.

Perl version 5.8.8 documentation - perliol

Page 2http://perldoc.perl.org

Layers vs Disciplines
Initial discussion of the ability to modify IO streams behaviour used
 the term "discipline" for the
entities which were added. This came (I
 believe) from the use of the term in "sfio", which in turn
borrowed it
 from "line disciplines" on Unix terminals. However, this document (and
 the C code) uses
the term "layer".

This is, I hope, a natural term given the implementation, and should
 avoid connotations that are
inherent in earlier uses of "discipline"
 for things which are rather different.

Data Structures
The basic data structure is a PerlIOl:

	 typedef struct _PerlIO PerlIOl;
	 typedef struct _PerlIO_funcs PerlIO_funcs;
	 typedef PerlIOl *PerlIO;

	 struct _PerlIO
	 {
	 PerlIOl *	 next; /* Lower layer */
	 PerlIO_funcs *	 tab; /* Functions for this layer */
	 IV		 flags; /* Various flags for state */
	 };

A PerlIOl * is a pointer to the struct, and the application
 level PerlIO * is a pointer to a PerlIOl
 * - i.e. a pointer
 to a pointer to the struct. This allows the application level PerlIO *
 to remain
constant while the actual PerlIOl * underneath
 changes. (Compare perl's SV * which remains
constant while its sv_any field changes as the scalar's type changes.) An IO stream is
 then in
general represented as a pointer to this linked-list of
 "layers".

It should be noted that because of the double indirection in a PerlIO *,
 a &(perlio->next) "is" a
PerlIO *, and so to some degree
 at least one layer can use the "standard" API on the next layer
down.

A "layer" is composed of two parts:

1. The functions and attributes of the "layer class".

2. The per-instance data for a particular handle.

Functions and Attributes
The functions and attributes are accessed via the "tab" (for table)
 member of PerlIOl. The functions
(methods of the layer "class") are
 fixed, and are defined by the PerlIO_funcs type. They are
broadly the
 same as the public PerlIO_xxxxx functions:

 struct _PerlIO_funcs
 {
 Size_t		 fsize;
 char *		 name;
 Size_t		 size;
 IV		 kind;
 IV		 (*Pushed)(pTHX_ PerlIO *f,const char *mode,SV *arg, PerlIO_funcs
*tab);
 IV		 (*Popped)(pTHX_ PerlIO *f);
 PerlIO *	 (*Open)(pTHX_ PerlIO_funcs *tab,
 			 AV *layers, IV n,
 			 const char *mode,
 			 int fd, int imode, int perm,

Perl version 5.8.8 documentation - perliol

Page 3http://perldoc.perl.org

 			 PerlIO *old,
 			 int narg, SV **args);
 IV		 (*Binmode)(pTHX_ PerlIO *f);
 SV *		 (*Getarg)(pTHX_ PerlIO *f, CLONE_PARAMS *param, int flags)
 IV		 (*Fileno)(pTHX_ PerlIO *f);
 PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o, CLONE_PARAMS *param, int
 flags)
 /* Unix-like functions - cf sfio line disciplines */
 SSize_t	 (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);
 SSize_t	 (*Unread)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);
 SSize_t	 (*Write)(pTHX_ PerlIO *f, const void *vbuf, Size_t count);
 IV		 (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);
 Off_t	 (*Tell)(pTHX_ PerlIO *f);
 IV		 (*Close)(pTHX_ PerlIO *f);
 /* Stdio-like buffered IO functions */
 IV		 (*Flush)(pTHX_ PerlIO *f);
 IV		 (*Fill)(pTHX_ PerlIO *f);
 IV		 (*Eof)(pTHX_ PerlIO *f);
 IV		 (*Error)(pTHX_ PerlIO *f);
 void		 (*Clearerr)(pTHX_ PerlIO *f);
 void		 (*Setlinebuf)(pTHX_ PerlIO *f);
 /* Perl's snooping functions */
 STDCHAR *	 (*Get_base)(pTHX_ PerlIO *f);
 Size_t	 (*Get_bufsiz)(pTHX_ PerlIO *f);
 STDCHAR *	 (*Get_ptr)(pTHX_ PerlIO *f);
 SSize_t	 (*Get_cnt)(pTHX_ PerlIO *f);
 void		 (*Set_ptrcnt)(pTHX_ PerlIO *f,STDCHAR *ptr,SSize_t cnt);
 };

The first few members of the struct give a function table size for
 compatibility check "name" for the
layer, the size to malloc for the per-instance data,
 and some flags which are attributes of the class
as whole (such as whether it is a buffering
 layer), then follow the functions which fall into four basic
groups:

1. Opening and setup functions

2. Basic IO operations

3. Stdio class buffering options.

4. Functions to support Perl's traditional "fast" access to the buffer.

A layer does not have to implement all the functions, but the whole
 table has to be present.
Unimplemented slots can be NULL (which will
 result in an error when called) or can be filled in with
stubs to
 "inherit" behaviour from a "base class". This "inheritance" is fixed
 for all instances of the
layer, but as the layer chooses which stubs
 to populate the table, limited "multiple inheritance" is
possible.

Per-instance Data
The per-instance data are held in memory beyond the basic PerlIOl
 struct, by making a PerlIOl the
first member of the layer's struct
 thus:

	 typedef struct
	 {
	 struct _PerlIO base; /* Base "class" info */
	 STDCHAR *	 buf; /* Start of buffer */
	 STDCHAR *	 end; /* End of valid part of buffer */
	 STDCHAR *	 ptr; /* Current position in buffer */

Perl version 5.8.8 documentation - perliol

Page 4http://perldoc.perl.org

	 Off_t		 posn; /* Offset of buf into the file */
	 Size_t		 bufsiz; /* Real size of buffer */
	 IV		 oneword; /* Emergency buffer */
	 } PerlIOBuf;

In this way (as for perl's scalars) a pointer to a PerlIOBuf can be
 treated as a pointer to a PerlIOl.

Layers in action.
 table perlio unix
 | |
 +-----------+ +----------+ +--------+
 PerlIO ->| |--->| next |--->| NULL |
 +-----------+ +----------+ +--------+
 | | | buffer | | fd |
 +-----------+ | | +--------+
 | | +----------+

The above attempts to show how the layer scheme works in a simple case.
 The application's PerlIO
 * points to an entry in the table(s)
 representing open (allocated) handles. For example the first three
slots
 in the table correspond to stdin,stdout and stderr. The table
 in turn points to the current
"top" layer for the handle - in this case
 an instance of the generic buffering layer "perlio". That layer in
turn
 points to the next layer down - in this case the lowlevel "unix" layer.

The above is roughly equivalent to a "stdio" buffered stream, but with
 much more flexibility:

If Unix level read/write/lseek is not appropriate for (say)
 sockets then the "unix" layer can
be replaced (at open time or even
 dynamically) with a "socket" layer.

Different handles can have different buffering schemes. The "top"
 layer could be the "mmap"
layer if reading disk files was quicker
 using mmap than read. An "unbuffered" stream can be
implemented
 simply by not having a buffer layer.

Extra layers can be inserted to process the data as it flows through.
 This was the driving need
for including the scheme in perl 5.7.0+ - we
 needed a mechanism to allow data to be
translated between perl's
 internal encoding (conceptually at least Unicode as UTF-8), and the

"native" format used by the system. This is provided by the
 ":encoding(xxxx)" layer which
typically sits above the buffering layer.

A layer can be added that does "\n" to CRLF translation. This layer
 can be used on any
platform, not just those that normally do such
 things.

Per-instance flag bits
The generic flag bits are a hybrid of O_XXXXX style flags deduced
 from the mode string passed to
PerlIO_open(), and state bits for
 typical buffer layers.

PERLIO_F_EOF

End of file.

PERLIO_F_CANWRITE

Writes are permitted, i.e. opened as "w" or "r+" or "a", etc.

PERLIO_F_CANREAD

Reads are permitted i.e. opened "r" or "w+" (or even "a+" - ick).

PERLIO_F_ERROR

An error has occurred (for PerlIO_error()).

Perl version 5.8.8 documentation - perliol

Page 5http://perldoc.perl.org

PERLIO_F_TRUNCATE

Truncate file suggested by open mode.

PERLIO_F_APPEND

All writes should be appends.

PERLIO_F_CRLF

Layer is performing Win32-like "\n" mapped to CR,LF for output and CR,LF
 mapped to "\n" for
input. Normally the provided "crlf" layer is the only
 layer that need bother about this.
PerlIO_binmode() will mess with this
 flag rather than add/remove layers if the
PERLIO_K_CANCRLF bit is set
 for the layers class.

PERLIO_F_UTF8

Data written to this layer should be UTF-8 encoded; data provided
 by this layer should be
considered UTF-8 encoded. Can be set on any layer
 by ":utf8" dummy layer. Also set on
":encoding" layer.

PERLIO_F_UNBUF

Layer is unbuffered - i.e. write to next layer down should occur for
 each write to this layer.

PERLIO_F_WRBUF

The buffer for this layer currently holds data written to it but not sent
 to next layer.

PERLIO_F_RDBUF

The buffer for this layer currently holds unconsumed data read from
 layer below.

PERLIO_F_LINEBUF

Layer is line buffered. Write data should be passed to next layer down
 whenever a "\n" is
seen. Any data beyond the "\n" should then be
 processed.

PERLIO_F_TEMP

File has been unlink()ed, or should be deleted on close().

PERLIO_F_OPEN

Handle is open.

PERLIO_F_FASTGETS

This instance of this layer supports the "fast gets" interface.
 Normally set based on
PERLIO_K_FASTGETS for the class and by the
 existence of the function(s) in the table.
However a class that
 normally provides that interface may need to avoid it on a
 particular
instance. The "pending" layer needs to do this when
 it is pushed above a layer which does not
support the interface.
 (Perl's sv_gets() does not expect the streams fast gets behaviour
 to
change during one "get".)

Methods in Detail
fsize

	 Size_t fsize;

Size of the function table. This is compared against the value PerlIO
 code "knows" as a
compatibility check. Future versions may be able
 to tolerate layers compiled against an old
version of the headers.

name

	 char * name;

Perl version 5.8.8 documentation - perliol

Page 6http://perldoc.perl.org

The name of the layer whose open() method Perl should invoke on
 open(). For example if the
layer is called APR, you will call:

 open $fh, ">:APR", ...

and Perl knows that it has to invoke the PerlIOAPR_open() method
 implemented by the APR
layer.

size

	 Size_t size;

The size of the per-instance data structure, e.g.:

 sizeof(PerlIOAPR)

If this field is zero then PerlIO_pushed does not malloc anything
 and assumes layer's
Pushed function will do any required layer stack
 manipulation - used to avoid malloc/free
overhead for dummy layers.
 If the field is non-zero it must be at least the size of PerlIOl,
PerlIO_pushed will allocate memory for the layer's data structures
 and link new layer onto
the stream's stack. (If the layer's Pushed
 method returns an error indication the layer is
popped again.)

kind

	 IV kind;

* PERLIO_K_BUFFERED

The layer is buffered.

* PERLIO_K_RAW

The layer is acceptable to have in a binmode(FH) stack - i.e. it does not
 (or will
configure itself not to) transform bytes passing through it.

* PERLIO_K_CANCRLF

Layer can translate between "\n" and CRLF line ends.

* PERLIO_K_FASTGETS

Layer allows buffer snooping.

* PERLIO_K_MULTIARG

Used when the layer's open() accepts more arguments than usual. The
 extra
arguments should come not before the MODE argument. When this
 flag is used it's up
to the layer to validate the args.

Pushed

	 IV	 (*Pushed)(pTHX_ PerlIO *f,const char *mode, SV *arg);

The only absolutely mandatory method. Called when the layer is pushed
 onto the stack. The
mode argument may be NULL if this occurs
 post-open. The arg will be non-NULL if an
argument string was
 passed. In most cases this should call PerlIOBase_pushed() to

convert mode into the appropriate PERLIO_F_XXXXX flags in
 addition to any actions the layer
itself takes. If a layer is not
 expecting an argument it need neither save the one passed to it,
nor
 provide Getarg() (it could perhaps Perl_warn that the argument
 was un-expected).

Returns 0 on success. On failure returns -1 and should set errno.

Popped

	 IV	 (*Popped)(pTHX_ PerlIO *f);

Perl version 5.8.8 documentation - perliol

Page 7http://perldoc.perl.org

Called when the layer is popped from the stack. A layer will normally
 be popped after
Close() is called. But a layer can be popped
 without being closed if the program is
dynamically managing layers on
 the stream. In such cases Popped() should free any
resources
 (buffers, translation tables, ...) not held directly in the layer's
 struct. It should also
Unread() any unconsumed data that has been
 read and buffered from the layer below back
to that layer, so that it
 can be re-provided to what ever is now above.

Returns 0 on success and failure. If Popped() returns true then perlio.c assumes that either
the layer has popped itself, or the
 layer is super special and needs to be retained for other
reasons.
 In most cases it should return false.

Open

	 PerlIO *	 (*Open)(...);

The Open() method has lots of arguments because it combines the
 functions of perl's open,
PerlIO_open, perl's sysopen, PerlIO_fdopen and PerlIO_reopen. The full prototype is
as
 follows:

 PerlIO *	 (*Open)(pTHX_ PerlIO_funcs *tab,
			 AV *layers, IV n,
			 const char *mode,
			 int fd, int imode, int perm,
			 PerlIO *old,
			 int narg, SV **args);

Open should (perhaps indirectly) call PerlIO_allocate() to allocate
 a slot in the table and
associate it with the layers information for
 the opened file, by calling PerlIO_push. The
layers AV is an
 array of all the layers destined for the PerlIO *, and any
 arguments passed
to them, n is the index into that array of the
 layer being called. The macro PerlIOArg will
return a (possibly NULL) SV * for the argument passed to the layer.

The mode string is an "fopen()-like" string which would match
 the regular expression
/^[I#]?[rwa]\+?[bt]?$/.

The 'I' prefix is used during creation of stdin..stderr via
 special PerlIO_fdopen calls;
the '#' prefix means that this is sysopen and that imode and perm should be passed to
PerlLIO_open3; 'r' means read, 'w' means write and 'a' means append. The '+' suffix
means that both reading and
 writing/appending are permitted. The 'b' suffix means file
should
 be binary, and 't' means it is text. (Almost all layers should do
 the IO in binary mode,
and ignore the b/t bits. The :crlf layer
 should be pushed to handle the distinction.)

If old is not NULL then this is a PerlIO_reopen. Perl itself
 does not use this (yet?) and
semantics are a little vague.

If fd not negative then it is the numeric file descriptor fd,
 which will be open in a manner
compatible with the supplied mode
 string, the call is thus equivalent to PerlIO_fdopen. In
this case nargs will be zero.

If nargs is greater than zero then it gives the number of arguments
 passed to open, otherwise
it will be 1 if for example PerlIO_open was called. In simple cases SvPV_nolen(*args) is the

pathname to open.

Having said all that translation-only layers do not need to provide Open() at all, but rather
leave the opening to a lower level layer
 and wait to be "pushed". If a layer does provide
Open() it should
 normally call the Open() method of next layer down (if any) and
 then push
itself on top if that succeeds.

If PerlIO_push was performed and open has failed, it must PerlIO_pop itself, since if it's
not, the layer won't be removed
 and may cause bad problems.

Returns NULL on failure.

Binmode

Perl version 5.8.8 documentation - perliol

Page 8http://perldoc.perl.org

	 IV (*Binmode)(pTHX_ PerlIO *f);

Optional. Used when :raw layer is pushed (explicitly or as a result
 of binmode(FH)). If not
present layer will be popped. If present
 should configure layer as binary (or pop itself) and
return 0.
 If it returns -1 for error binmode will fail with layer
 still on the stack.

Getarg

	 SV * (*Getarg)(pTHX_ PerlIO *f,
			 CLONE_PARAMS *param, int flags);

Optional. If present should return an SV * representing the string
 argument passed to the layer
when it was
 pushed. e.g. ":encoding(ascii)" would return an SvPV with value
 "ascii". (param
and flags arguments can be ignored in most
 cases)

Dup uses Getarg to retrieve the argument originally passed to Pushed, so you must
implement this function if your layer has an
 extra argument to Pushed and will ever be Duped.

Fileno

	 IV (*Fileno)(pTHX_ PerlIO *f);

Returns the Unix/Posix numeric file descriptor for the handle. Normally
PerlIOBase_fileno() (which just asks next layer down) will suffice
 for this.

Returns -1 on error, which is considered to include the case where the
 layer cannot provide
such a file descriptor.

Dup

	 PerlIO * (*Dup)(pTHX_ PerlIO *f, PerlIO *o,
			 CLONE_PARAMS *param, int flags);

XXX: Needs more docs.

Used as part of the "clone" process when a thread is spawned (in which
 case param will be
non-NULL) and when a stream is being duplicated via
 '&' in the open.

Similar to Open, returns PerlIO* on success, NULL on failure.

Read

	 SSize_t	 (*Read)(pTHX_ PerlIO *f, void *vbuf, Size_t count);

Basic read operation.

Typically will call Fill and manipulate pointers (possibly via the
 API). PerlIOBuf_read()
may be suitable for derived classes which
 provide "fast gets" methods.

Returns actual bytes read, or -1 on an error.

Unread

	 SSize_t	 (*Unread)(pTHX_ PerlIO *f,
			 const void *vbuf, Size_t count);

A superset of stdio's ungetc(). Should arrange for future reads to
 see the bytes in vbuf. If
there is no obviously better implementation
 then PerlIOBase_unread() provides the
function by pushing a "fake"
 "pending" layer above the calling layer.

Returns the number of unread chars.

Write

	 SSize_t	 (*Write)(PerlIO *f, const void *vbuf, Size_t count);

Basic write operation.

Perl version 5.8.8 documentation - perliol

Page 9http://perldoc.perl.org

Returns bytes written or -1 on an error.

Seek

	 IV	 (*Seek)(pTHX_ PerlIO *f, Off_t offset, int whence);

Position the file pointer. Should normally call its own Flush
 method and then the Seek
method of next layer down.

Returns 0 on success, -1 on failure.

Tell

	 Off_t	 (*Tell)(pTHX_ PerlIO *f);

Return the file pointer. May be based on layers cached concept of
 position to avoid overhead.

Returns -1 on failure to get the file pointer.

Close

	 IV	 (*Close)(pTHX_ PerlIO *f);

Close the stream. Should normally call PerlIOBase_close() to flush
 itself and close layers
below, and then deallocate any data structures
 (buffers, translation tables, ...) not held directly
in the data
 structure.

Returns 0 on success, -1 on failure.

Flush

	 IV	 (*Flush)(pTHX_ PerlIO *f);

Should make stream's state consistent with layers below. That is, any
 buffered write data
should be written, and file position of lower layers
 adjusted for data read from below but not
actually consumed.
 (Should perhaps Unread() such data to the lower layer.)

Returns 0 on success, -1 on failure.

Fill

	 IV	 (*Fill)(pTHX_ PerlIO *f);

The buffer for this layer should be filled (for read) from layer
 below. When you "subclass"
PerlIOBuf layer, you want to use its _read method and to supply your own fill method, which
fills the
 PerlIOBuf's buffer.

Returns 0 on success, -1 on failure.

Eof

	 IV	 (*Eof)(pTHX_ PerlIO *f);

Return end-of-file indicator. PerlIOBase_eof() is normally sufficient.

Returns 0 on end-of-file, 1 if not end-of-file, -1 on error.

Error

	 IV	 (*Error)(pTHX_ PerlIO *f);

Return error indicator. PerlIOBase_error() is normally sufficient.

Returns 1 if there is an error (usually when PERLIO_F_ERROR is set,
 0 otherwise.

Clearerr

	 void	 (*Clearerr)(pTHX_ PerlIO *f);

Perl version 5.8.8 documentation - perliol

Page 10http://perldoc.perl.org

Clear end-of-file and error indicators. Should call PerlIOBase_clearerr()
 to set the
PERLIO_F_XXXXX flags, which may suffice.

Setlinebuf

	 void	 (*Setlinebuf)(pTHX_ PerlIO *f);

Mark the stream as line buffered. PerlIOBase_setlinebuf() sets the

PERLIO_F_LINEBUF flag and is normally sufficient.

Get_base

	 STDCHAR *	 (*Get_base)(pTHX_ PerlIO *f);

Allocate (if not already done so) the read buffer for this layer and
 return pointer to it. Return
NULL on failure.

Get_bufsiz

	 Size_t	 (*Get_bufsiz)(pTHX_ PerlIO *f);

Return the number of bytes that last Fill() put in the buffer.

Get_ptr

	 STDCHAR *	 (*Get_ptr)(pTHX_ PerlIO *f);

Return the current read pointer relative to this layer's buffer.

Get_cnt

	 SSize_t	 (*Get_cnt)(pTHX_ PerlIO *f);

Return the number of bytes left to be read in the current buffer.

Set_ptrcnt

	 void	 (*Set_ptrcnt)(pTHX_ PerlIO *f,
			 STDCHAR *ptr, SSize_t cnt);

Adjust the read pointer and count of bytes to match ptr and/or cnt.
 The application (or layer
above) must ensure they are consistent.
 (Checking is allowed by the paranoid.)

Utilities
To ask for the next layer down use PerlIONext(PerlIO *f).

To check that a PerlIO* is valid use PerlIOValid(PerlIO *f). (All
 this does is really just to check that the
pointer is non-NULL and
 that the pointer behind that is non-NULL.)

PerlIOBase(PerlIO *f) returns the "Base" pointer, or in other words,
 the PerlIOl* pointer.

PerlIOSelf(PerlIO* f, type) return the PerlIOBase cast to a type.

Perl_PerlIO_or_Base(PerlIO* f, callback, base, failure, args) either
 calls the callback from the
functions of the layer f (just by
 the name of the IO function, like "Read") with the args, or if
 there is no
such callback, calls the base version of the callback
 with the same args, or if the f is invalid, set errno
to EBADF and
 return failure.

Perl_PerlIO_or_fail(PerlIO* f, callback, failure, args) either calls
 the callback of the functions of the
layer f with the args,
 or if there is no such callback, set errno to EINVAL. Or if the f is
 invalid, set errno
to EBADF and return failure.

Perl_PerlIO_or_Base_void(PerlIO* f, callback, base, args) either calls
 the callback of the functions of
the layer f with the args,
 or if there is no such callback, calls the base version of the
 callback with the

Perl version 5.8.8 documentation - perliol

Page 11http://perldoc.perl.org

same args, or if the f is invalid, set errno to
 EBADF.

Perl_PerlIO_or_fail_void(PerlIO* f, callback, args) either calls the callback of the functions of the layer
f with the args, or if
 there is no such callback, set errno to EINVAL. Or if the f is
 invalid, set errno to
EBADF.

Implementing PerlIO Layers
If you find the implementation document unclear or not sufficient,
 look at the existing PerlIO layer
implementations, which include:

* C implementations

The perlio.c and perliol.h in the Perl core implement the
 "unix", "perlio", "stdio", "crlf", "utf8",
"byte", "raw", "pending"
 layers, and also the "mmap" and "win32" layers if applicable.
 (The
"win32" is currently unfinished and unused, to see what is used
 instead in Win32, see
"Querying the layers of filehandles" in PerlIO .)

PerlIO::encoding, PerlIO::scalar, PerlIO::via in the Perl core.

PerlIO::gzip and APR::PerlIO (mod_perl 2.0) on CPAN.

* Perl implementations

PerlIO::via::QuotedPrint in the Perl core and PerlIO::via::* on CPAN.

If you are creating a PerlIO layer, you may want to be lazy, in other
 words, implement only the
methods that interest you. The other methods
 you can either replace with the "blank" methods

 PerlIOBase_noop_ok
 PerlIOBase_noop_fail

(which do nothing, and return zero and -1, respectively) or for
 certain methods you may assume a
default behaviour by using a NULL
 method. The Open method looks for help in the 'parent' layer.
 The
following table summarizes the behaviour:

 method behaviour with NULL

 Clearerr PerlIOBase_clearerr
 Close PerlIOBase_close
 Dup PerlIOBase_dup
 Eof PerlIOBase_eof
 Error PerlIOBase_error
 Fileno PerlIOBase_fileno
 Fill FAILURE
 Flush SUCCESS
 Getarg SUCCESS
 Get_base FAILURE
 Get_bufsiz FAILURE
 Get_cnt FAILURE
 Get_ptr FAILURE
 Open INHERITED
 Popped SUCCESS
 Pushed SUCCESS
 Read PerlIOBase_read
 Seek FAILURE
 Set_cnt FAILURE
 Set_ptrcnt FAILURE
 Setlinebuf PerlIOBase_setlinebuf
 Tell FAILURE
 Unread PerlIOBase_unread

Perl version 5.8.8 documentation - perliol

Page 12http://perldoc.perl.org

 Write FAILURE

 FAILURE Set errno (to EINVAL in UNIXish, to LIB$_INVARG in VMS) and
 return -1 (for numeric return values) or NULL (for
pointers)
 INHERITED Inherited from the layer below
 SUCCESS Return 0 (for numeric return values) or a pointer

Core Layers
The file perlio.c provides the following layers:

"unix"

A basic non-buffered layer which calls Unix/POSIX read(), write(), lseek(), close().
No buffering. Even on platforms that distinguish
 between O_TEXT and O_BINARY this layer
is always O_BINARY.

"perlio"

A very complete generic buffering layer which provides the whole of
 PerlIO API. It is also
intended to be used as a "base class" for other
 layers. (For example its Read() method is
implemented in terms of
 the Get_cnt()/Get_ptr()/Set_ptrcnt() methods).

"perlio" over "unix" provides a complete replacement for stdio as seen
 via PerlIO API. This is
the default for USE_PERLIO when system's stdio
 does not permit perl's "fast gets" access,
and which do not
 distinguish between O_TEXT and O_BINARY.

"stdio"

A layer which provides the PerlIO API via the layer scheme, but
 implements it by calling
system's stdio. This is (currently) the default
 if system's stdio provides sufficient access to
allow perl's "fast gets"
 access and which do not distinguish between O_TEXT and O_BINARY.

"crlf"

A layer derived using "perlio" as a base class. It provides Win32-like
 "\n" to CR,LF translation.
Can either be applied above "perlio" or serve
 as the buffer layer itself. "crlf" over "unix" is the
default if system
 distinguishes between O_TEXT and O_BINARY opens. (At some point
 "unix"
will be replaced by a "native" Win32 IO layer on that platform,
 as Win32's read/write layer has
various drawbacks.) The "crlf" layer is
 a reasonable model for a layer which transforms data in
some way.

"mmap"

If Configure detects mmap() functions this layer is provided (with
 "perlio" as a "base") which
does "read" operations by mmap()ing the
 file. Performance improvement is marginal on
modern systems, so it is
 mainly there as a proof of concept. It is likely to be unbundled from

the core at some point. The "mmap" layer is a reasonable model for a
 minimalist "derived"
layer.

"pending"

An "internal" derivative of "perlio" which can be used to provide
 Unread() function for layers
which have no buffer or cannot be
 bothered. (Basically this layer's Fill() pops itself off the
stack
 and so resumes reading from layer below.)

"raw"

A dummy layer which never exists on the layer stack. Instead when
 "pushed" it actually pops
the stack removing itself, it then calls
 Binmode function table entry on all the layers in the
stack - normally
 this (via PerlIOBase_binmode) removes any layers which do not have
PERLIO_K_RAW bit set. Layers can modify that behaviour by defining
 their own Binmode
entry.

Perl version 5.8.8 documentation - perliol

Page 13http://perldoc.perl.org

"utf8"

Another dummy layer. When pushed it pops itself and sets the PERLIO_F_UTF8 flag on the
layer which was (and now is once more)
 the top of the stack.

In addition perlio.c also provides a number of PerlIOBase_xxxx()
 functions which are intended to
be used in the table slots of classes
 which do not need to do anything special for a particular method.

Extension Layers
Layers can made available by extension modules. When an unknown layer
 is encountered the PerlIO
code will perform the equivalent of :

 use PerlIO 'layer';

Where layer is the unknown layer. PerlIO.pm will then attempt to:

 require PerlIO::layer;

If after that process the layer is still not defined then the open
 will fail.

The following extension layers are bundled with perl:

":encoding"

 use Encoding;

makes this layer available, although PerlIO.pm "knows" where to
 find it. It is an example of a
layer which takes an argument as it is
 called thus:

 open($fh, "<:encoding(iso-8859-7)", $pathname);

":scalar"

Provides support for reading data from and writing data to a scalar.

 open($fh, "+<:scalar", \$scalar);

When a handle is so opened, then reads get bytes from the string value
 of $scalar, and writes
change the value. In both cases the position
 in $scalar starts as zero but can be altered via
seek, and
 determined via tell.

Please note that this layer is implied when calling open() thus:

 open($fh, "+<", \$scalar);

":via"

Provided to allow layers to be implemented as Perl code. For instance:

 use PerlIO::via::StripHTML;
 open(my $fh, "<:via(StripHTML)", "index.html");

See PerlIO::via for details.

TODO
Things that need to be done to improve this document.

Explain how to make a valid fh without going through open()(i.e. apply
 a layer). For example if
the file is not opened through perl, but we
 want to get back a fh, like it was opened by Perl.

How PerlIO_apply_layera fits in, where its docs, was it made public?

Currently the example could be something like this:

 PerlIO *foo_to_PerlIO(pTHX_ char *mode, ...)

Perl version 5.8.8 documentation - perliol

Page 14http://perldoc.perl.org

 {
 char *mode; /* "w", "r", etc */
 const char *layers = ":APR"; /* the layer name */
 PerlIO *f = PerlIO_allocate(aTHX);
 if (!f) {
 return NULL;
 }

 PerlIO_apply_layers(aTHX_ f, mode, layers);

 if (f) {
 PerlIOAPR *st = PerlIOSelf(f, PerlIOAPR);
 /* fill in the st struct, as in _open() */
 st->file = file;
 PerlIOBase(f)->flags |= PERLIO_F_OPEN;

 return f;
 }
 return NULL;
 }

fix/add the documentation in places marked as XXX.

The handling of errors by the layer is not specified. e.g. when $!
 should be set explicitly, when
the error handling should be just
 delegated to the top layer.

Probably give some hints on using SETERRNO() or pointers to where they
 can be found.

I think it would help to give some concrete examples to make it easier
 to understand the API.
Of course I agree that the API has to be
 concise, but since there is no second document that
is more of a
 guide, I think that it'd make it easier to start with the doc which is
 an API, but has
examples in it in places where things are unclear, to
 a person who is not a PerlIO guru (yet).

